GNU tar archive tool reference by
example

Table of Contents

Archive and gzip-compress the current folder with tar
Archive and gzip-compress the current folder using maximal compression possible
Set compression level as the GZIP environmental variable for gzip
Set compression level by piping tar output to the gzip
Use -1 option for modern versions of tar
Archive and bzip2-compress the current folder with tar
Archive the current folder but exlude specific file and/or subfolder
List contents of a tar archive (gzipped or not) without actually extracting it
Create a tar archive embedding the current day, month, and year in the name
Append file(s) to the existing archive
Move the current directory and all of its contents as a whole, keeping file permissions
Encrypt/Decrypt the resulting archive with OpenSSL and password
Extract only specific file(s) from the tar archive
Archive directory on the remote server and download to the local host via SSH in one command
Remove / do not preserve / anonymize username and group name of the files owner when
adding files to tar archive
Delete only specific file(s) or folder(s) from the archive
How can I run tar in parallel on multi-core CPU when creating an archive?
Find all tar archives even those NOT having .tar extension
tar archives symlinks instead of the objects they point to, how to fix?
Archive only those objects modified last 24 hours
Archive only those objects modified between 24 and 48 hours ago
Verify tar archive integrity in a Bash script, i.e. non interactively

by Yuri Slobodyanyuk https://www.linkedin.com/in/yurislobodyanyuk/

All the examples below are for the Linux GNU tar, not for Solaris, FreeBSD, or Mac

NOTE . . .
OS operating systems native versions of tar.

Archive and gzip-compress the current
folder with tar

© © 00 00 N 9 9 o

https://www.linkedin.com/in/yurislobodyanyuk/

tar -czf gzipped-folder.tar.gz

Here:

* ¢ For create
* z For gzip compress

» f Filename of the archive to create

. (dot) for the current folder

The file gzipped-folder.tar.gz will contain all the files (including dot files) and subfolders of the
current folder.

Archive and gzip-compress the current
folder using maximal compression possible

There are few ways to do it. The older versions of tar do not accept compression level for the gzip,
so we have to hint to the gzip in other way.

Set compression level as the GZIP environmental
variable for gzip

Let’s set the maximum compression level of 9:

GZIP=-9 tar -cvzf maxcompression.tar.gz .

Disadvantage of this method is that it depends on the shell you are using. It works

NOTE
for Bash, but may fail to work in other shells.

Set compression level by piping tar output to the gzip

Most starightforward way to do it:
tar -cvf - . | gzip -9 - > maxcompression.tar.gz
Variation of the above:

tar -cvf maxcompression.tar ; gzip -9 maxcompression.tar

2 https://www.linkedin.com/in/yurislobodyanyuk/ GNU tar archive tool reference by example

https://www.linkedin.com/in/yurislobodyanyuk/

Use -1 option for modern versions of tar

This option I or --use-compress-program appeared somewhere in version 1.22 or earlier, year of
20009. So, if your tar is newer than that (most probably is), you can change compression level:

tar -I 'gzip -9' -cvf maxcompression.tar.gz .

I sends its arguments in quotes as options to the compression program of choice as is.

Archive and bzip2-compress the current
folder with tar

Same as the above, but use bzip2 compression instead of the gzip. In the past the bzip2 compression
produced smaller size archives compared to the gzip, but today they perform pretty much the
same.

tar -cjf gzipped-folder.tar.bz2

Here:

* ¢ For create
* j For bzip2 compress

» f Filename of the archive to create

The file gzipped-folder.tar.bz2 will contain all the files (including dot files) and subfolders of the
current folder.

Archive the current folder but exlude
specific file and/or subfolder

Even though not explicitly mentioned in the tar’s man - except for the newest
WARNING versions, you HAVE to put the folder/path to work on as the LAST argument on
the line, or --exclude will be ignored.

E.g. create an archive named tared-folder.tar to include all files/subfolders of the current folder
except the file named cookbook.gzip and subfolder and its contents named .qgit:

tar -cvf tared-folder.tar --exclude=cookbook.gzip --exclude=.git

v is for verbose output during the operation.

List contents of a tar archive (gzipped or
not) without actually extracting it

Use -t option before the f:

tar -tf gzipped-folder.tar.gz

Create a tar archive embedding the current
day, month, and year in the name

When running tar as scheduled/cron-ed job, it is benefitial to include date of the archive creation in
the name.

E.g.: create a tar archive named backup-<current date>.tar from files in the current folder ending in
*.md:

tar -cf backup-‘date +%d-%m-%Y'.tar *.md
Result:

1s *.tar
backup-13-07-2021.tar

NOTE Look at the man date for more options, like hour, second etc.

Append file(s) to the existing archive

The file(s) will be appended at the end of the archive, just so you know.

E.g. let’s append to the existing backup-13-07-2021.tar archive the file named missfont.log:

tar -rf backup-13-07-2021.tar missfont.log

4 https://www.linkedin.com/in/yurislobodyanyuk/ GNU tar archive tool reference by example

https://www.linkedin.com/in/yurislobodyanyuk/

Move the current directory and all of its
contents as a whole, keeping file
permissions

An old trick to compensate for various deficiencies of cp and mv.

tar -cf - . | (cd new-location; tar xvpf -)

Encrypt/Decrypt the resulting archive with
OpenSSL and password

We just pipe the tar output to the OpenSSL, provided it is already installed. The password is given
interactively in the CLI, so this is not very secure way to do so.

E.g. tar the current folder into tar archive and the encrypt it:

tar -cvf - * | openssl enc -e -aes256 -out encrypted-dolder.tar.enc
enter aes-256-cbc encryption password:

Verifying - enter aes-256-cbc encryption password:

**%* WARNING : deprecated key derivation used.

Using -iter or -pbkdf2 would be better.

Now, decrypt it:

openssl enc -d -aes256 -in encrypted-folder.tar.enc | tar -xf -
enter aes-256-cbc decryption password:

Extract only specific file(s) from the tar
archive

We may specify a specific filename to extrtact or use shell globbing patterns for file name matching.

E.g.: extract only file named README.md from the archive tar cookbooks.tar.bz2:
tar -xjvf cookbooks.tar.bz2 ./README.md

E.g.: extract all Markdown files from the archive:

tar -xjvf cookbooks.tar.bz2 ./*.md

-j is to extract from bzip2-compressed archive, if extracting from plain tar archive

NOTE . .
just remove -j

Archive directory on the remote server and
download to the local host via SSH in one
command

Task: add to tar archive and compress contents of the directory ASM on the remote server
19.23.55.158 and download it to the local host as file ASM.tar.gz

ssh root@19.23.55.158 'cd ASM && tar -czf - *' > ASM.tar.gz
root@19.23.55.158"'s password:

Result:

1s -1
-rw-r--r-- 1 root root 505 Jul 14 08:39 ASM.tar.gz

Here:

» ASM - relative path of the directory on the remote server, using absolute path is recommended.

* tar -czf - - creates gzip-compressed tar archive with stdout being the output device so we can
redirect output on local server to the file ASM.tar.gz

Remove / do not preserve / anonymize
username and group name of the files owner
when adding files to tar archive

By default tar will add files/directories to the archive along with their owner user/group. The only
reliable way to prevent this is to replace actual data with fake user/group when adding to the
archive.

E.g. Add file README.md to the archive, but change the owner’s username/group to the fictitious
Doe with numeric id of 1002. If we supply just username/group name, then depending on
version/implementation, the tar may change them as asked but leave the real numeric IDs. To force
tar not to do it, specify both - alphanumeric name and numeric ID or add beyond numeric IDs the
option --numeric-owner, which forces tar to keep only numeric IDs.

6 https://www.linkedin.com/in/yurislobodyanyuk/ GNU tar archive tool reference by example

https://www.linkedin.com/in/yurislobodyanyuk/

NOTE tar does not check if the given user and group name actually exist on the system.

tar -cvf perms.tar README.md --owner=Doe:1002 --group=Doe:1002
Verify:

tar -vtf perms.tar
-rw-r--r-- Doe/Doe 542 2020-08-22 09:50 README.md

Delete only specific file(s) or folder(s) from
the archive

Not really possible. There is --delete option that seemingly does this, but under the surface this
option just combines extracting the whole archive to the temporary directory, deleting the file(s) in
question, and creating the archive again from scratch into one command.

How can I run tar in parallel on multi-core
CPU when creating an archive?

The short answer - you can’t. The extended answer - you can’t archive in parallel to the same
archive (it was never the goal of tar, which originally wrote archives to the physical tapes that
could not be accessed in parallel), but you have options (if you need at all) to parallelize
compression of the archive. The options for parallel execution depend on the compressing utility
used. There are xz, 7zip, and pigz tools which can compress an archive in parallel, given the correct
options. But they cannot decompress in parallel way though, only to compress.

Find all tar archives even those NOT having
.tar extension

In situation where you are presented with a bunch of files with random names, finding which ones
are proper tar archive can be done in few ways. The idea behind all of them is to look for the tar’s
magic number inside the file. On systems with file utility installed, it is really easy:

file * | awk -F: '/POSIX tar archive/ {print $1}'

damaged. tar
deleteme-13-07-2021.tar
maxwithI.tar.gz
perms.tar

permstar

permstar?

As you can see, it found tar archives without any extension permstar and permstar2.

When the file tool is not available (highly unprobable), we can go more old school way looking at
the magic number:

find . -type f -exec xxd -g 6 -s 257 -1 6 \{\} \; -print | sed -n
'/757374617220/{n;p}"

./perms.tar

./maxwithI.tar.gz

./damaged. tar

./deleteme-13-07-2021.tar

./test/deleteme-13-07-2021.tar

./permstar2

./permstar

Here:

» 757374617220 is the magic number for the tar filetype
* xxd is hex dumper to show contents of a file in hexadecimal

* -g 6 tells xxd to group the found bytes into a group of 6 bytes (size of the magic number) when
printing

* -1 6 limits output to just 6 bytes

» -s 257 skips first 256 bytes to start printing from byte 257 forward

tar archives symlinks instead of the objects
they point to, how to fix?

Use -h switch to tell tar to dereference symlinks and add to archive objects (directories/files) that
those symlinks point to.

tar -hef .

This will dereference all symlinks found in the current directory.

Archive only those objects modified last 24
hours

Tar itself does not have option to search by timestamps, but find does.

8 https://www.linkedin.com/in/yurislobodyanyuk/ GNU tar archive tool reference by example

https://www.linkedin.com/in/yurislobodyanyuk/

find . -mtime @ -print@ | tar -cvf modified.tar --null -T -

Here:

* -mtime tells find what modification timestamps of the objects we are looking for, in days. The 0
means "0 days ago", i.e. last 24 hours. This option accepts relative values as well. E.g. -2 means
modified less than 2 days ago. And -mtime +2 will find objects modified earlier than 2 days ago.
See below for another example.

Archive only those objects modified between 24 and 48
hours ago

The extension of the above. In general, find is such an essential tool, that you can’t do much
without it in any Linux/BSD/Unix system.

find . -mtime 1 -print® | tar -cvf modified.tar --null -T -

NOTE To search for modified times in minute resolution, use -mmin instead of -mtime.

Verify tar archive integrity in a Bash script,
i.e. non interactively

Tar itself does not calculate/save checksum in the archive it creates. The rudimentary "integrity"
check can be done with -t switch, which produces an error and exits if the archive is severely
damaged - cannot be read, headers are mangled and such. The change in the contents of a file this
-t check will NOT notice. When gzip-ing tar archive, though, the CRC checksum is autosaved, but of
the final tar archive, not individual files inside this archive. This way, if there is a CRC checksum
mismatch on unzipping tar archive, the gzip will issue an error on the standard output.

So, to try and read the archive, verifying that it is readable:

#!/bin/bash
if | tar tf /path/to/archive.tar & /dev/null; then # Here we check the EXIT status of
reading a tar archive, also redirecting stdout to the /dev/null, as no need to see the
contents of archive

do_something_if_exit_status_is_error
fi

	GNU tar archive tool reference by example
	Table of Contents
	Archive and gzip-compress the current folder with tar
	Archive and gzip-compress the current folder using maximal compression possible
	Set compression level as the GZIP environmental variable for gzip
	Set compression level by piping tar output to the gzip
	Use -I option for modern versions of tar

	Archive and bzip2-compress the current folder with tar
	Archive the current folder but exlude specific file and/or subfolder
	List contents of a tar archive (gzipped or not) without actually extracting it
	Create a tar archive embedding the current day, month, and year in the name
	Append file(s) to the existing archive
	Move the current directory and all of its contents as a whole, keeping file permissions
	Encrypt/Decrypt the resulting archive with OpenSSL and password
	Extract only specific file(s) from the tar archive
	Archive directory on the remote server and download to the local host via SSH in one command
	Remove / do not preserve / anonymize username and group name of the files owner when adding files to tar archive
	Delete only specific file(s) or folder(s) from the archive
	How can I run tar in parallel on multi-core CPU when creating an archive?
	Find all tar archives even those NOT having .tar extension
	tar archives symlinks instead of the objects they point to, how to fix?
	Archive only those objects modified last 24 hours
	Archive only those objects modified between 24 and 48 hours ago

	Verify tar archive integrity in a Bash script, i.e. non interactively

